A non-parametric Scale-based Corner Detector

Risultato della ricerca: Conference contribution

7 Citazioni (Scopus)

Abstract

This paper introduces a new Harris-affine corner detector algorithm, that does not need parameters to locate corners in images, given an observation scale. Standard detectors require to fine tune the values of parameters which strictly depend on the particular input image. A quantitative comparison between our implementation and a standard Harris-affine implementation provides good results, showing that the proposed methodology is robust and accurate. The benchmark consists of public images used in literature for feature detection
Lingua originaleEnglish
Titolo della pubblicazione ospiteProceedings - International Conference on Pattern Recognition
Pagine116-119
Numero di pagine4
Stato di pubblicazionePublished - 2008

Serie di pubblicazioni

NomeINTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

Fingerprint

Detectors

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition

Cita questo

Valenti, C. F., Tegolo, D., & Bellavia, F. (2008). A non-parametric Scale-based Corner Detector. In Proceedings - International Conference on Pattern Recognition (pagg. 116-119). (INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION).

A non-parametric Scale-based Corner Detector. / Valenti, Cesare Fabio; Tegolo, Domenico; Bellavia, Fabio.

Proceedings - International Conference on Pattern Recognition. 2008. pag. 116-119 (INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION).

Risultato della ricerca: Conference contribution

Valenti, CF, Tegolo, D & Bellavia, F 2008, A non-parametric Scale-based Corner Detector. in Proceedings - International Conference on Pattern Recognition. INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, pagg. 116-119.
Valenti CF, Tegolo D, Bellavia F. A non-parametric Scale-based Corner Detector. In Proceedings - International Conference on Pattern Recognition. 2008. pag. 116-119. (INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION).
Valenti, Cesare Fabio ; Tegolo, Domenico ; Bellavia, Fabio. / A non-parametric Scale-based Corner Detector. Proceedings - International Conference on Pattern Recognition. 2008. pagg. 116-119 (INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION).
@inproceedings{59dd92fb19394c0c87f8310c60594259,
title = "A non-parametric Scale-based Corner Detector",
abstract = "This paper introduces a new Harris-affine corner detector algorithm, that does not need parameters to locate corners in images, given an observation scale. Standard detectors require to fine tune the values of parameters which strictly depend on the particular input image. A quantitative comparison between our implementation and a standard Harris-affine implementation provides good results, showing that the proposed methodology is robust and accurate. The benchmark consists of public images used in literature for feature detection",
author = "Valenti, {Cesare Fabio} and Domenico Tegolo and Fabio Bellavia",
year = "2008",
language = "English",
isbn = "978-1-4244-2175-6",
series = "INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION",
pages = "116--119",
booktitle = "Proceedings - International Conference on Pattern Recognition",

}

TY - GEN

T1 - A non-parametric Scale-based Corner Detector

AU - Valenti, Cesare Fabio

AU - Tegolo, Domenico

AU - Bellavia, Fabio

PY - 2008

Y1 - 2008

N2 - This paper introduces a new Harris-affine corner detector algorithm, that does not need parameters to locate corners in images, given an observation scale. Standard detectors require to fine tune the values of parameters which strictly depend on the particular input image. A quantitative comparison between our implementation and a standard Harris-affine implementation provides good results, showing that the proposed methodology is robust and accurate. The benchmark consists of public images used in literature for feature detection

AB - This paper introduces a new Harris-affine corner detector algorithm, that does not need parameters to locate corners in images, given an observation scale. Standard detectors require to fine tune the values of parameters which strictly depend on the particular input image. A quantitative comparison between our implementation and a standard Harris-affine implementation provides good results, showing that the proposed methodology is robust and accurate. The benchmark consists of public images used in literature for feature detection

UR - http://hdl.handle.net/10447/40082

M3 - Conference contribution

SN - 978-1-4244-2175-6

T3 - INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

SP - 116

EP - 119

BT - Proceedings - International Conference on Pattern Recognition

ER -