A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish

Antonio Calò, Di Franco, Rossi, Ser-Giacomi, Antonio Caló, Legrand

Risultato della ricerca: Articlepeer review

4 Citazioni (Scopus)

Abstract

Assessing larval dispersal is essential to understand the structure and dynamics of marine populations. However, knowledge about early-life dispersal is sparse, and so is our understanding of the spawning process, perhaps the most obscure component of biphasic life cycles. Indeed, poorly known species-specific spawning modality and species-specific early-life traits, as well as the high spatio-temporal variability of the oceanic circulation experienced during larval drift, hamper our ability to appraise the realized connectivity of coastal fishes. Here, we propose an analytical framework which combines Lagrangian modelling, network theory, otolith analyses and biogeographical information to pinpoint and characterize larval sources which are then grouped into discrete spawning areas. Such well-delineated larval sources allow improving the quantitative evaluations of both dispersal scales and connectivity patterns. To illustrate its added value, our approach is applied to two case-studies focusing on Diplodus sargus and Diplodus vulgaris in the Adriatic sea. We evidence robust correlations between otolith geochemistry and modelled spawning areas to assess their relative importance for the larval replenishment of the Apulian coast. Our results show that, contrary to D. sargus, D. vulgaris larvae originate from both eastern and western Adriatic shorelines. Our findings also suggest that dispersal distances and dispersal surfaces scale differently with the pelagic larval duration. Furthermore, 30.8% of D. sargus larvae and 23.6% of D. vulgaris larvae of the Apulian populations originate from Marine protected area (MPA), exemplifying larval export from MPAs to surrounding unprotected areas. This flexible multidisciplinary framework, which can be adjusted to any coastal fish and oceanic system, exploits the explanatory power of a dispersal model, fine-tuned and backed-up by observations, to provide more reliable scientific basis for the management and conservation of marine ecosystems.
Lingua originaleEnglish
pagine (da-a)104761-
Numero di pagine13
RivistaMarine Environmental Research
Volume151
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • Oceanography
  • Aquatic Science
  • Pollution

Fingerprint Entra nei temi di ricerca di 'A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish'. Insieme formano una fingerprint unica.

Cita questo