A min-max principle for non-differentiable functions with a weak compactness condition

Roberto Livrea, Salvatore A. Marano, Roberto Livrea

Risultato della ricerca: Articlepeer review

7 Citazioni (Scopus)

Abstract

A general critical point result established by Ghoussoub is extended to the case of locally Lipschitz continuous functions satisfying a weak Palais-Smale hypothesis, which includes the so-called non-smooth Cerami condition. Some special cases are then pointed out.
Lingua originaleEnglish
pagine (da-a)1019-1029
Numero di pagine11
RivistaCommunications on Pure and Applied Analysis
Volume8
Stato di pubblicazionePublished - 2009

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'A min-max principle for non-differentiable functions with a weak compactness condition'. Insieme formano una fingerprint unica.

Cita questo