A Methodological Framework to Discover Pharmacogenomic Interactions Based on Random Forests

Giuliana Ferrante, Giovanna Cilluffo, Velia Malizia, Salvatore Fasola, Laura Montalbano, Giovanna Cilluffo, Stefania La Grutta

Risultato della ricerca: Articlepeer review

1 Citazioni (Scopus)

Abstract

The identification of genomic alterations in tumor tissues, including somatic mutations, deletions, and gene amplifications, produces large amounts of data, which can be correlated with a diversity of therapeutic responses. We aimed to provide a methodological framework to discover pharmacogenomic interactions based on Random Forests. We matched two databases from the Cancer Cell Line Encyclopaedia (CCLE) project, and the Genomics of Drug Sensitivity in Cancer (GDSC) project. For a total of 648 shared cell lines, we considered 48,270 gene alterations from CCLE as input features and the area under the dose-response curve (AUC) for 265 drugs from GDSC as the outcomes. A three-step reduction to 501 alterations was performed, selecting known driver genes and excluding very frequent/infrequent alterations and redundant ones. For each model, we used the concordance correlation coefficient (CCC) for assessing the predictive performance, and permutation importance for assessing the contribution of each alteration. In a reasonable computational time (56 min), we identified 12 compounds whose response was at least fairly sensitive (CCC > 20) to the alteration profiles. Some diversities were found in the sets of influential alterations, providing clues to discover significant drug-gene interactions. The proposed methodological framework can be helpful for mining pharmacogenomic interactions.
Lingua originaleEnglish
Numero di pagine15
RivistaGenes
Volume12
Stato di pubblicazionePublished - 2021

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.1300.1311???
  • ???subjectarea.asjc.2700.2716???

Fingerprint

Entra nei temi di ricerca di 'A Methodological Framework to Discover Pharmacogenomic Interactions Based on Random Forests'. Insieme formano una fingerprint unica.

Cita questo