A method for evaluating rainfall kinetic power by a characteristic drop diameter

Risultato della ricerca: Article

Abstract

Empirical relationships linking kinetic energy to rainfall intensity are commonly used to estimate rainfall erosivity. In this paper, using the drop-size distribution (DSD) proposed by Marshall and Palmer, a relationship for calculating the rainfall kinetic power was firstly deduced. This equation requires the simultaneous measurement of both the median volume diameter and the rainfall intensity and its application also reveals the drawback of needing the measurement of the whole DSD by an expensive disdrometric technique. Then, using a fictitious precipitation, which is both constituted by droplets having the same diameter (mean volume diameter) and having the same volume of the actual rainfall, a new expression of the rainfall kinetic power was deduced. This last equation has the advantage of allowing the estimate of the rainfall kinetic power by using the measurements of both rainfall intensity and the total number of droplets, reaching a horizontal unit area in an unit time, which can be acquired by a cheap device using a piezoelectric force transducer. This new relationship for estimating the rainfall kinetic power was tested using disdrometric measurements carried out at two experimental sites in Italy (Palermo) and in Spain (El Teularet). These experimental tests demonstrated that the rainfall kinetic power estimated by the mean volume diameter has an accuracy similar to the literature relationships proposed by Wischmeier and Smith, Brown and Foster and McGregor et al. Finally this investigation also showed that this novel approach can be applied estimating the median volume diameter by the mean volume diameter and the standard deviation of the measured drop diameters, whose measurement can be obtained by a force transducer.
Lingua originaleEnglish
pagine (da-a)123996-
Numero di pagine10
RivistaJournal of Hydrology
Volume577
Stato di pubblicazionePublished - 2019

Fingerprint

kinetics
rainfall
precipitation intensity
transducer
droplet
erosivity
method
kinetic energy

All Science Journal Classification (ASJC) codes

  • Water Science and Technology

Cita questo

@article{9c817651075543c5b7a917a70d21217d,
title = "A method for evaluating rainfall kinetic power by a characteristic drop diameter",
abstract = "Empirical relationships linking kinetic energy to rainfall intensity are commonly used to estimate rainfall erosivity. In this paper, using the drop-size distribution (DSD) proposed by Marshall and Palmer, a relationship for calculating the rainfall kinetic power was firstly deduced. This equation requires the simultaneous measurement of both the median volume diameter and the rainfall intensity and its application also reveals the drawback of needing the measurement of the whole DSD by an expensive disdrometric technique. Then, using a fictitious precipitation, which is both constituted by droplets having the same diameter (mean volume diameter) and having the same volume of the actual rainfall, a new expression of the rainfall kinetic power was deduced. This last equation has the advantage of allowing the estimate of the rainfall kinetic power by using the measurements of both rainfall intensity and the total number of droplets, reaching a horizontal unit area in an unit time, which can be acquired by a cheap device using a piezoelectric force transducer. This new relationship for estimating the rainfall kinetic power was tested using disdrometric measurements carried out at two experimental sites in Italy (Palermo) and in Spain (El Teularet). These experimental tests demonstrated that the rainfall kinetic power estimated by the mean volume diameter has an accuracy similar to the literature relationships proposed by Wischmeier and Smith, Brown and Foster and McGregor et al. Finally this investigation also showed that this novel approach can be applied estimating the median volume diameter by the mean volume diameter and the standard deviation of the measured drop diameters, whose measurement can be obtained by a force transducer.",
author = "Vito Ferro and Carollo, {Francesco Giuseppe} and Serio, {Maria Angela}",
year = "2019",
language = "English",
volume = "577",
pages = "123996--",
journal = "Journal of Hydrology",
issn = "0022-1694",
publisher = "Elsevier",

}

TY - JOUR

T1 - A method for evaluating rainfall kinetic power by a characteristic drop diameter

AU - Ferro, Vito

AU - Carollo, Francesco Giuseppe

AU - Serio, Maria Angela

PY - 2019

Y1 - 2019

N2 - Empirical relationships linking kinetic energy to rainfall intensity are commonly used to estimate rainfall erosivity. In this paper, using the drop-size distribution (DSD) proposed by Marshall and Palmer, a relationship for calculating the rainfall kinetic power was firstly deduced. This equation requires the simultaneous measurement of both the median volume diameter and the rainfall intensity and its application also reveals the drawback of needing the measurement of the whole DSD by an expensive disdrometric technique. Then, using a fictitious precipitation, which is both constituted by droplets having the same diameter (mean volume diameter) and having the same volume of the actual rainfall, a new expression of the rainfall kinetic power was deduced. This last equation has the advantage of allowing the estimate of the rainfall kinetic power by using the measurements of both rainfall intensity and the total number of droplets, reaching a horizontal unit area in an unit time, which can be acquired by a cheap device using a piezoelectric force transducer. This new relationship for estimating the rainfall kinetic power was tested using disdrometric measurements carried out at two experimental sites in Italy (Palermo) and in Spain (El Teularet). These experimental tests demonstrated that the rainfall kinetic power estimated by the mean volume diameter has an accuracy similar to the literature relationships proposed by Wischmeier and Smith, Brown and Foster and McGregor et al. Finally this investigation also showed that this novel approach can be applied estimating the median volume diameter by the mean volume diameter and the standard deviation of the measured drop diameters, whose measurement can be obtained by a force transducer.

AB - Empirical relationships linking kinetic energy to rainfall intensity are commonly used to estimate rainfall erosivity. In this paper, using the drop-size distribution (DSD) proposed by Marshall and Palmer, a relationship for calculating the rainfall kinetic power was firstly deduced. This equation requires the simultaneous measurement of both the median volume diameter and the rainfall intensity and its application also reveals the drawback of needing the measurement of the whole DSD by an expensive disdrometric technique. Then, using a fictitious precipitation, which is both constituted by droplets having the same diameter (mean volume diameter) and having the same volume of the actual rainfall, a new expression of the rainfall kinetic power was deduced. This last equation has the advantage of allowing the estimate of the rainfall kinetic power by using the measurements of both rainfall intensity and the total number of droplets, reaching a horizontal unit area in an unit time, which can be acquired by a cheap device using a piezoelectric force transducer. This new relationship for estimating the rainfall kinetic power was tested using disdrometric measurements carried out at two experimental sites in Italy (Palermo) and in Spain (El Teularet). These experimental tests demonstrated that the rainfall kinetic power estimated by the mean volume diameter has an accuracy similar to the literature relationships proposed by Wischmeier and Smith, Brown and Foster and McGregor et al. Finally this investigation also showed that this novel approach can be applied estimating the median volume diameter by the mean volume diameter and the standard deviation of the measured drop diameters, whose measurement can be obtained by a force transducer.

UR - http://hdl.handle.net/10447/391346

UR - http://www.elsevier.com/inca/publications/store/5/0/3/3/4/3

M3 - Article

VL - 577

SP - 123996-

JO - Journal of Hydrology

JF - Journal of Hydrology

SN - 0022-1694

ER -