A hybrid system for malware detection on big data

Risultato della ricerca: Otherpeer review

13 Citazioni (Scopus)

Abstract

In recent years, the increasing diffusion of malicious software has encouraged the adoption of advanced machine learning algorithms to timely detect new threats. A cloud-based approach allows to exploit the big data produced by client agents to train such algorithms, but on the other hand, poses severe challenges on their scalability and performance. We propose a hybrid cloud-based malware detection system in which static and dynamic analyses are combined in order to find a good trade-off between response time and detection accuracy. Our system performs a continuous learning process of its models, based on deep networks, by exploiting the growing amount of data provided by clients. The preliminary experimental evaluation confirms the suitability of the approach proposed here.
Lingua originaleEnglish
Pagine45-50
Numero di pagine6
Stato di pubblicazionePublished - 2018

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2606???
  • ???subjectarea.asjc.1700.1702???
  • ???subjectarea.asjc.1700.1705???

Fingerprint

Entra nei temi di ricerca di 'A hybrid system for malware detection on big data'. Insieme formano una fingerprint unica.

Cita questo