TY - CHAP
T1 - A context-aware system for ambient assisted living
AU - Morana, Marco
AU - Peri, Daniele
AU - De Paola, Alessandra
AU - Gaglio, Salvatore
AU - Ortolani, Marco
AU - Lo Re, Giuseppe
AU - Ferraro, Pierluca
PY - 2017
Y1 - 2017
N2 - In the near future, the world's population will be characterized by an increasing average age, and consequently, the number of people requiring for a special household assistance will dramatically rise. In this scenario, smart homes will significantly help users to increase their quality of life, while maintaining a great level of autonomy. This paper presents a system for Ambient Assisted Living (AAL) capable of understanding context and user's behavior by exploiting data gathered by a pervasive sensor network. The knowledge inferred by adopting a Bayesian knowledge extraction approach is exploited to disambiguate the collected observations, making the AAL system able to detect and predict anomalies in user's behavior or health condition, in order to send appropriate alerts to family members and caregivers. Experimental results performed on a simulated smart home prove the effectiveness of the proposed system.
AB - In the near future, the world's population will be characterized by an increasing average age, and consequently, the number of people requiring for a special household assistance will dramatically rise. In this scenario, smart homes will significantly help users to increase their quality of life, while maintaining a great level of autonomy. This paper presents a system for Ambient Assisted Living (AAL) capable of understanding context and user's behavior by exploiting data gathered by a pervasive sensor network. The knowledge inferred by adopting a Bayesian knowledge extraction approach is exploited to disambiguate the collected observations, making the AAL system able to detect and predict anomalies in user's behavior or health condition, in order to send appropriate alerts to family members and caregivers. Experimental results performed on a simulated smart home prove the effectiveness of the proposed system.
UR - http://hdl.handle.net/10447/250733
UR - http://springerlink.com/content/0302-9743/copyright/2005/
M3 - Chapter
SN - 9783319675848
T3 - LECTURE NOTES IN COMPUTER SCIENCE
SP - 426
EP - 438
BT - Ubiquitous Computing and Ambient Intelligence
11th International Conference, UCAmI 2017 Philadelphia, PA, USA, November 7–10, 2017
Proceedings
ER -