A Comparative Study on Feature Selection for Retinal Vessel Segmentation Using FABC

Domenico Tegolo, Emanuele Trucco

Risultato della ricerca: Otherpeer review

19 Citazioni (Scopus)

Abstract

This paper presents a comparative study on five feature selectionheuristics applied to a retinal image database called DRIVE. Features are chosenfrom a feature vector (encoding local information, but as well informationfrom structures and shapes available in the image) constructed for each pixel inthe field of view (FOV) of the image. After selecting the most discriminatory features,an AdaBoost classifier is applied for training. The results of classificationsare used to compare the effectiveness of the five feature selection methods.
Lingua originaleEnglish
Pagine655-662
Numero di pagine8
Stato di pubblicazionePublished - 2009

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • ???subjectarea.asjc.1700.1700???

Fingerprint Entra nei temi di ricerca di 'A Comparative Study on Feature Selection for Retinal Vessel Segmentation Using FABC'. Insieme formano una fingerprint unica.

Cita questo