A common extension of Arhangel'skii's Theorem and the Hajnal-Juhasz inequality

Santi Domenico Spadaro, Santi Spadaro, Angelo Bella

Risultato della ricerca: Articlepeer review

2 Citazioni (Scopus)

Abstract

We present a bound for the weak Lindelöf number of the Gδ-modification of a Hausdorff space which implies various known cardinal inequalities, including the following two fundamental results in the theory of cardinal invariants in topology: |X|≤2^{L(X)χ(X)} (Arhangel'skii) and |X|≤2^{c(X)χ(X)} (Hajnal-Juhasz). This solves a question that goes back to Bell, Ginsburg and Woods and is mentioned in Hodel's survey on Arhangel'skii's Theorem. In contrast to previous attempts we do not need any separation axiom beyond T2.
Lingua originaleEnglish
pagine (da-a)197-203
Numero di pagine7
RivistaCanadian Mathematical Bulletin
Volume63
Stato di pubblicazionePublished - 2020

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2600???

Cita questo