Abstract

Tissue engineering is an emerging multidisciplinary field that aims at reproducing in vitro and/or in vivotissues with morphological and functional features similar to the biological tissue of the human body.In this communication we report setting of three-dimensional structures able to mimic the extracellularmatrix of the nervous system: we prepared Poly-L-Lactic Acid (PLLA) porous scaffolds via thermallyinduced phase separation (TIPS), and investigated the parameters that influence porosity, average pore sizeand degree of interconnection, i.e. polymer concentration, temperature and time of process. Astrocytes andbrain capillary endothelial cells (BCECs) were cultured on these three-dimensional structures and tested fortheir ability to grow and survive on PLLA scaffolds. We analyzed in parallel the cell growth in 2D and 3Dculture systems and observed the differences in cell morphology by fluorescence analysis: three-dimensionalscaffolds have the ability to guide cell growth, provide support, encourage cell adhesion and proliferation.Astrocytes and BCECs adapted well to these porous matrices, not only remaining on the surface, but alsopenetrating inside the scaffolds. This 3D cell culture system could be further enriched to host two or threedifferent brain cell types, in order to set an in vitro model of blood brain barrier, that may be useful for drugdelivery studies, and for the formulation of new therapeutic strategies, to be used for the treatment ofneurological diseases.
Lingua originaleEnglish
Pagine20-20
Numero di pagine1
Stato di pubblicazionePublished - 2016

Fingerprint

Astrocytes
Endothelial Cells
Brain
Porosity
Tissue Engineering
Growth
Blood-Brain Barrier
Human Body
Cell Adhesion
Nervous System
Polymers
Cell Culture Techniques
Fluorescence
Cell Proliferation
Temperature
poly(lactic acid)
In Vitro Techniques
Therapeutics

Cita questo

@conference{43e11f783ac1498e8d858b1b80d96110,
title = "3D cultures of rat astrocytes and brain capillary endothelial cells on Poly-L-lactic acid scaffolds",
abstract = "Tissue engineering is an emerging multidisciplinary field that aims at reproducing in vitro and/or in vivotissues with morphological and functional features similar to the biological tissue of the human body.In this communication we report setting of three-dimensional structures able to mimic the extracellularmatrix of the nervous system: we prepared Poly-L-Lactic Acid (PLLA) porous scaffolds via thermallyinduced phase separation (TIPS), and investigated the parameters that influence porosity, average pore sizeand degree of interconnection, i.e. polymer concentration, temperature and time of process. Astrocytes andbrain capillary endothelial cells (BCECs) were cultured on these three-dimensional structures and tested fortheir ability to grow and survive on PLLA scaffolds. We analyzed in parallel the cell growth in 2D and 3Dculture systems and observed the differences in cell morphology by fluorescence analysis: three-dimensionalscaffolds have the ability to guide cell growth, provide support, encourage cell adhesion and proliferation.Astrocytes and BCECs adapted well to these porous matrices, not only remaining on the surface, but alsopenetrating inside the scaffolds. This 3D cell culture system could be further enriched to host two or threedifferent brain cell types, in order to set an in vitro model of blood brain barrier, that may be useful for drugdelivery studies, and for the formulation of new therapeutic strategies, to be used for the treatment ofneurological diseases.",
keywords = "2D culture systems, Astrocytes, Poly-L-Lactic Acid (PLLA) porous scaffolds, and 3D culture systems, brain capillary endothelial cells (BCECs)",
author = "{Carfi' Pavia}, Francesco and Gabriella Schiera and Anna Fricano and {Di Bella}, {Maria Antonietta} and {Di Liegro}, Italia and {Di Liegro}, {Carlo Maria}",
year = "2016",
language = "English",
pages = "20--20",

}

TY - CONF

T1 - 3D cultures of rat astrocytes and brain capillary endothelial cells on Poly-L-lactic acid scaffolds

AU - Carfi' Pavia, Francesco

AU - Schiera, Gabriella

AU - Fricano, Anna

AU - Di Bella, Maria Antonietta

AU - Di Liegro, Italia

AU - Di Liegro, Carlo Maria

PY - 2016

Y1 - 2016

N2 - Tissue engineering is an emerging multidisciplinary field that aims at reproducing in vitro and/or in vivotissues with morphological and functional features similar to the biological tissue of the human body.In this communication we report setting of three-dimensional structures able to mimic the extracellularmatrix of the nervous system: we prepared Poly-L-Lactic Acid (PLLA) porous scaffolds via thermallyinduced phase separation (TIPS), and investigated the parameters that influence porosity, average pore sizeand degree of interconnection, i.e. polymer concentration, temperature and time of process. Astrocytes andbrain capillary endothelial cells (BCECs) were cultured on these three-dimensional structures and tested fortheir ability to grow and survive on PLLA scaffolds. We analyzed in parallel the cell growth in 2D and 3Dculture systems and observed the differences in cell morphology by fluorescence analysis: three-dimensionalscaffolds have the ability to guide cell growth, provide support, encourage cell adhesion and proliferation.Astrocytes and BCECs adapted well to these porous matrices, not only remaining on the surface, but alsopenetrating inside the scaffolds. This 3D cell culture system could be further enriched to host two or threedifferent brain cell types, in order to set an in vitro model of blood brain barrier, that may be useful for drugdelivery studies, and for the formulation of new therapeutic strategies, to be used for the treatment ofneurological diseases.

AB - Tissue engineering is an emerging multidisciplinary field that aims at reproducing in vitro and/or in vivotissues with morphological and functional features similar to the biological tissue of the human body.In this communication we report setting of three-dimensional structures able to mimic the extracellularmatrix of the nervous system: we prepared Poly-L-Lactic Acid (PLLA) porous scaffolds via thermallyinduced phase separation (TIPS), and investigated the parameters that influence porosity, average pore sizeand degree of interconnection, i.e. polymer concentration, temperature and time of process. Astrocytes andbrain capillary endothelial cells (BCECs) were cultured on these three-dimensional structures and tested fortheir ability to grow and survive on PLLA scaffolds. We analyzed in parallel the cell growth in 2D and 3Dculture systems and observed the differences in cell morphology by fluorescence analysis: three-dimensionalscaffolds have the ability to guide cell growth, provide support, encourage cell adhesion and proliferation.Astrocytes and BCECs adapted well to these porous matrices, not only remaining on the surface, but alsopenetrating inside the scaffolds. This 3D cell culture system could be further enriched to host two or threedifferent brain cell types, in order to set an in vitro model of blood brain barrier, that may be useful for drugdelivery studies, and for the formulation of new therapeutic strategies, to be used for the treatment ofneurological diseases.

KW - 2D culture systems

KW - Astrocytes

KW - Poly-L-Lactic Acid (PLLA) porous scaffolds

KW - and 3D culture systems

KW - brain capillary endothelial cells (BCECs)

UR - http://hdl.handle.net/10447/249519

M3 - Other

SP - 20

EP - 20

ER -