2-(n2,2n,2n-1) designs obtained from affine planes

    Risultato della ricerca: Articlepeer review

    Abstract

    The simple incidence structure D(A, 2) formed by points and un-ordered pairs of distinct parallel lines of a finite affine plane A = (P,L) oforder n > 2 is a 2 − (n^2, 2n, 2n − 1) design. If n = 3, D(A, 2) is the com-plementary design of A. If n = 4, D(A, 2) is isomorphic to the geometricdesign AG3(4, 2) (see [2; Theorem 1.2]). In this paper we give necessaryand sufficient conditions for a 2−(n^2, 2n, 2n−1) design to be of the formD(A, 2) for some finite affine plane A of order n > 4. As a consequencewe obtain a characterization of small designs D(A, 2).
    Lingua originaleEnglish
    pagine (da-a)21-26
    RivistaACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS. FACULTAS RERUM NATURALIUM. MATHEMATICA
    Volume2005
    Stato di pubblicazionePublished - 2006

    Fingerprint Entra nei temi di ricerca di '2-(n2,2n,2n-1) designs obtained from affine planes'. Insieme formano una fingerprint unica.

    Cita questo