Validation of loop-mediated isothermal amplification (LAMP) field tool for rapid and sensitive diagnosis of contagious agalactia in small ruminants

Marco Tolone, Marco Tolone, Robin A. J. Nicholas, Roberto Puleio, Claudia Manno, Serena Tumino, Alessio Parco, Giuseppe Arcoleo, Guido Ruggero Loria

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Contagious agalactia (CA), an infectious disease of small ruminants, caused by Mycoplasma agalactiae, is responsible for severe losses to dairy sheep production with substantial socioeconomic impacts on small-scale farmers. The diagnosis of CA is still problematic, time-consuming and requires well-equipped labs for confirmation of outbreaks. Therefore, rapid, accurate and cost-effective diagnostic tests are urgently needed. This work aims to validate a novel Loop-Mediated Isothermal Amplification (LAMP) test, based on the p40 target gene, for the detection of M. agalactiae in dairy sheep in order to confirm its potential practical use as a rapid and cheap field test. The LAMP system proposed in this study consists of a portable device composed of real-time fluorometer with the automatic interpretation of results displayed in a tablet. A total of 110 milk samples (90 positives and 20 negatives) were analysed to optimise the analysis procedure and to investigate the efficacy and robustness of the LAMP method. All samples were analysed using LAMP and conventional real-time PCR to compare the diagnostic sensitivity of the methods. The sensitivity of the LAMP was 10-fold higher than that of real-time PCR, with a detection limit up to 103 CFU/ml. The LAMP assay was able to detect M. agalactiae in 81 of 90 (90%, 95%CI 0.84–0.96) positive milk samples compared to 69 (77%, 95%CI 0.59–0.95) positive samples detected by real-time PCR; no positive signal occurred for any of the negative milk samples in either test. Therefore, the LAMP assay was found to be more sensitive than real-time PCR, low-cost, easy to perform, fast and not affected by contamination, indicating its potential as an effective diagnostic tool in the field level for the diagnosis of CA
Original languageEnglish
Number of pages8
JournalAnimals
Volume10
Publication statusPublished - 2020

All Science Journal Classification (ASJC) codes

  • Animal Science and Zoology
  • General Veterinary

Fingerprint

Dive into the research topics of 'Validation of loop-mediated isothermal amplification (LAMP) field tool for rapid and sensitive diagnosis of contagious agalactia in small ruminants'. Together they form a unique fingerprint.

Cite this