The stochastic limit of the Fröhlich Hamiltonian: Relations with the quantum hall effect

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

We propose a model of an approximatively two-dimensional electron gas in a uniform electric and magnetic field and interacting with a positive background through the Fröhlich Hamiltonian. We consider the stochastic limit of this model and we find the quantum Langevin equation and the generator of the master equation. This allows us to calculate the explicit form of the conductivity and the resistivity tensors and to deduce a fine tuning condition (FTC) between the electric and the magnetic fields. This condition shows that the x-component of the current is zero unless a certain quotient, involving the physical parameters, takes values in a finite set of physically meaningful rational numbers. We argue that this behavior is quite similar to that observed in the quantum Hall effect. We also show that, under some conditions on the form factors entering in the definition of the model, also the plateaux and the "almost" linear behavior of the Hall resistivity can be recovered. Our FTC does not distinguish between fractional and integer values.
Original languageEnglish
Pages (from-to)2515-2530
Number of pages16
JournalInternational Journal of Theoretical Physics
Volume42
Publication statusPublished - 2003

All Science Journal Classification (ASJC) codes

  • General Mathematics
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'The stochastic limit of the Fröhlich Hamiltonian: Relations with the quantum hall effect'. Together they form a unique fingerprint.

Cite this