The Mediterranean Coast of Andalusia (Spain): Medium-Term Evolution and Impacts of Coastal Structures

Giorgio Manno, F. Javier Gracia Prieto, Rosa Molina, F. Javier Gracia Prieto, Giorgio Anfuso

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


This paper shows coastal evolution along the Andalusia Region (Spain) and the impacts on it of coastal structures. The study area was divided into 47 units to calculate the erosion/accretion/stability (or evolution) rates by using the DSAS extension of ArcGIS software. Evolution rates were divided into different classes from “Very high accretion” to “Very high erosion”. As a result, 9 units recorded accretion, 19 stability and 19 erosion. Further, 17 units presented a positive balance and 28 units a negative one, showing a negative net balance of 29,738.4 m2/year corresponding to the loss of 1784.30 km2 of beach surface in the 1956–2016 period. The distribution of evolution areas along the studied coast was carried out by means of the “R” project for statistical computing. The analysis evidenced the impact of rigid structures: accretion was essentially observed up-drift of ports and groins and in correspondence of protection structures, especially of breakwaters. Erosion classes were observed down-drift of ports and groins and in correspondence of revetments/seawalls, and at largest river deltas, and “stability” was observed at pocket beaches and coastal areas locally stabilized by protection structures. Last, results were used to determine the distribution of swash- and drift-aligned coastal sectors and main direction of sedimentary transport.
Original languageEnglish
Number of pages24
Publication statusPublished - 2019

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Management, Monitoring, Policy and Law

Fingerprint Dive into the research topics of 'The Mediterranean Coast of Andalusia (Spain): Medium-Term Evolution and Impacts of Coastal Structures'. Together they form a unique fingerprint.

Cite this