The bistable system: an archetypal model for complex systems

Bernardo Spagnolo, Alessandro Fiasconaro, Davide Valenti, Angelo La Cognata, Pasquale Caldara

Research output: Other contribution


Bistable systems often play the role of archetypal models to understand the dynamical behavior of complex systems. Examples range from microphysics to macrophysics, bìology, chemistry and also econophysics. Moreover the statistical mechanics is essential to study the physical propertiesof complex systems and to investigate stochastic systems in which the microscopic degrees of freedom behave collectively over large scales. We investigate the nonlinear relaxation in a bistable system in classical and quantum systems. (i) As a first classical system, the role of the multiplicative and additive noise in the mean life time of the metastable state of an asymmetric bistable system isinvestigated. Thìs model is useful to describe the dynamical behavior of an out of equilibrium Ising spin system. Nonmonotonic behavior of the average lifetime as a function of both additive and multiplicative noise source intensities ìs found. (ii) The role of a non-Gaussian Lévy noise on thenonlinear dynamics of: a) a partide moving in a metastable system, b) an ecosystem composed by two competing species interacting with the surrounding environment, and c) a short overdampedIosephson junction is investigated. a) By using the backward fractional Fokker-Planck equation we investigate the barrier crossing event and the nonlinear relaxation time for a metastable system;b) In the ecosystem, the role of two non-Gaussian noise sources in the exclusion and coexistenceregimes is analyzed. Quasiperiodic oscillations and stochastic resonance phenomenon in the dynamicsof the competing specìes are found: c) In the short overdamped Iosepbson, the mean escape time of the junction is investigated considering Gaussian, Cauchy- Lorentz and Lévy-Smìrnov probability distributions of the noise signals. In these conditions we find resonant activation and thefirst evidence of noise enhanced stability in a metastable system in the presence of Lévy noise. ForCauchy- Lorentz noise source, trapping phenomena and power law dependence on the noise intensity are observed. (iii) Finally the dynamics of a quantum particle subject to an asymmetric bistable potential and interacting with a thermal reservoir is investigated. We obtain the time evolution ofthe population distributions in the position eigenstates of the particle, for dìfferent values of the couplingstrength with the thermal bath. The calculation is carried out by using the Feynman-Vernon functional under the discrete variable representation.
Original languageEnglish
Number of pages1
Publication statusPublished - 2011


Dive into the research topics of 'The bistable system: an archetypal model for complex systems'. Together they form a unique fingerprint.

Cite this