Abstract
We consider the problem of detection of features in the presence of clutter for spatio-temporal point patterns. In previous studies, related to the spatial context, Kth nearest-neighbor distances to classify points between clutter and features. In particular, a mixture of distributions whose parameters were estimated using an expectation-maximization algorithm. This paper extends this methodology to the spatio-temporal context by considering the properties of the spatio-temporal Kth nearest-neighbor distances. For this purpose, we make use of a couple of spatio-temporal distances, which are based on the Euclidean and the maximum norms. We show close forms for the probability distributions of such Kth nearest-neighbor distances and present an intensive simulation study together with an application to earthquakes.
Original language | English |
---|---|
Number of pages | 17 |
Journal | Environmetrics |
Volume | 31 |
Publication status | Published - 2020 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Ecological Modelling