Smoothed Particle ElectroMagnetics: a mesh-free solver for transients

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

In this paper an advanced mesh-free particle method for electromagnetic transient analysis, is presented. The aim is to obtain efficient simulations by avoiding the use of a mesh such as in the most popular grid-based numerical methods. The basic idea is to obtain numerical solutions for partial differential equations describing the electromagnetic problem by using a set of particles arbitrarily placed in the problem domain. The mesh-free smoothed particle hydrodynamics method has been adopted to obtainnumerical solution of time domain Maxwell’s curl equations. An explicit finite difference scheme has been employed for time integration. Details about the numerical treatment of electromagnetic vector fields components are discussed. Two case studies in one and in two dimensions are reported. In order to validate the new proposed methodology, named as Smoothed ParticleElectroMagnetics, a comparison with the standard finite difference time domain method results is performed. The intrinsic adaptive capability of the proposed method, has been exploited by introducing irregular particles distribution.
Original languageEnglish
Pages (from-to)194-205
Number of pages12
JournalJournal of Computational and Applied Mathematics
Volume191
Publication statusPublished - 2006

All Science Journal Classification (ASJC) codes

  • Computational Mathematics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Smoothed Particle ElectroMagnetics: a mesh-free solver for transients'. Together they form a unique fingerprint.

  • Cite this