Quantification of synchronization during atrial fibrillation by Shannon entropy: Validation in patients and computer model of atrial arrhythmias

Luca Faes, Luca Faes, Michela Masè, Flavia Ravelli, Marco Scaglione, Renzo Antolini

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

Atrial fibrillation (AF), a cardiac arrhythmia classically described as completely desynchronized, is now known to show a certain amount of synchronized electrical activity. In the present work a new method for quantifying the level of synchronization of the electrical activity recorded in pairs of atrial sites during atrial fibrillation is presented. A synchronization index (Sy) was defined by quantifying the degree of complexity of the distribution of the time delays between sites by Shannon entropy estimation. The capability of Sy to discriminate different AF types in patients was assessed on a database of 60 pairs of endocardial recordings from a multipolar basket catheter. The analysis showed a progressive and significant decrease of Sy with increasing AF complexity classes as defined by Wells (AF type I Sy = 0.73 ± 0.07, type II Sy = 0.56 ± 0.07, type III Sy = 0.36 ± 0.04, p < 0.001). The extension of Sy calculation to the whole right atrium showed the existence of spatial heterogeneities in the synchronization level. Moreover, experiments simulated by a computer model of atrial arrhythmias showed that propagation patterns with different complexity could be the basis of different synchronization levels found in patients. In conclusion the quantification of synchronization by Shannon entropy estimation of time delay dispersion may facilitate the identification of different propagation patterns associated with AF, thus enhancing our understanding of AF mechanisms and helping in its treatment. © 2005 IOP Publishing Ltd.
Original languageEnglish
Pages (from-to)911-923
Number of pages13
JournalPhysiological Measurement
Volume26
Publication statusPublished - 2005

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Physiology
  • Biomedical Engineering
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Quantification of synchronization during atrial fibrillation by Shannon entropy: Validation in patients and computer model of atrial arrhythmias'. Together they form a unique fingerprint.

  • Cite this