Plasmonic and diffractive nanostructures for light trapping—an experimental comparison

Isodiana Crupi, Liam Lewis, Manuel J. Mendes, Thomas F. Krauss, Seweryn Morawiec, Emiliano R. Martins, Christian S. Schuster, Maddalena Patrini, Isodiana Crupi

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)


Metal nanoparticles and diffractive nanostructures are widely studied for enhancing light trapping efficiency in thin-film solar cells. Both have achieved high performance enhancements, but there are very few direct comparisons between the two. Also, it is difficult to accurately determine the parasitic absorption of metal nanoparticles. Here, we assess the light trapping efficiencies of both approaches in an identical absorber configuration. We use a 240 nm thick amorphous silicon slab as the absorber layer and either a quasi-random supercell diffractive nanostructure or a layer of self-assembled metal nanoparticles for light trapping. Both the plasmonic and diffractive structures strongly enhance the absorption in the red/nearinfrared regime. At longer wavelengths, however, parasitic absorption becomes evident in the metal nanoparticles, which reduces the overall performance of the plasmonic approach. We have formulated a simple analytical model to assess the parasitic absorption and effective reflectivity of a plasmonic reflector and to demonstrate good agreement with the experimental data.
Original languageEnglish
Pages (from-to)194-200
Number of pages7
Publication statusPublished - 2015

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Plasmonic and diffractive nanostructures for light trapping—an experimental comparison'. Together they form a unique fingerprint.

Cite this