Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

The increasing interest about eco-sustainable materials in the industrial production (automotive, civil construction, packaging), has led to the increase of the research works dealing with biocomposites. However, until now the most attention has been devoted to the development of short fiber biocomposites for non-structural applications, whereas only a few works have considered high performance biocomposites for structural applications. Consequently, the development of structural biocomposites from robust natural fibers, as sisal fibers, is a result expected from the scientific community, but not yet achieved. In order to give a contribution to the implementation of high performance biocomposites constituted by a green matrix reinforced by sisal fibers, the present work proposes a manufacturing process that allows to obtain good quality unidirectional biocomposites with fiber volume fraction up to 70%. In detail, it uses unidirectional “stitched” fabrics, properly obtained in laboratory from optimized fibers, and a curing under a proper pressure cycle. The comparison with independent data reported in literature, has evidenced how the proposed biocomposites exhibit mechanical properties higher than most of biocomposites described in literature, so that they can advantageously substitute not only materials as steel, aluminum and glass fiber reinforced plastics, but also other biocomposites reinforced by more expensive fibers.
Original languageEnglish
Number of pages9
JournalComposite Structures
Volume194
Publication statusPublished - 2018

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Civil and Structural Engineering

Fingerprint Dive into the research topics of 'Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers'. Together they form a unique fingerprint.

  • Cite this