Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The increasing interest about eco-sustainable materials in the industrial production (automotive, civil construction, packaging), has led to the increase of the research works dealing with biocomposites. However, until now the most attention has been devoted to the development of short fiber biocomposites for non-structural applications, whereas only a few works have considered high performance biocomposites for structural applications. Consequently, the development of structural biocomposites from robust natural fibers, as sisal fibers, is a result expected from the scientific community, but not yet achieved. In order to give a contribution to the implementation of high performance biocomposites constituted by a green matrix reinforced by sisal fibers, the present work proposes a manufacturing process that allows to obtain good quality unidirectional biocomposites with fiber volume fraction up to 70%. In detail, it uses unidirectional “stitched” fabrics, properly obtained in laboratory from optimized fibers, and a curing under a proper pressure cycle. The comparison with independent data reported in literature, has evidenced how the proposed biocomposites exhibit mechanical properties higher than most of biocomposites described in literature, so that they can advantageously substitute not only materials as steel, aluminum and glass fiber reinforced plastics, but also other biocomposites reinforced by more expensive fibers.
Original languageEnglish
Pages (from-to)-
Number of pages9
JournalComposite Structures
Volume194
Publication statusPublished - 2018

Fingerprint

Fibers
Glass fiber reinforced plastics
Natural fibers
Steel
Aluminum
Curing
Volume fraction
Packaging
Mechanical properties

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Civil and Structural Engineering

Cite this

@article{467bed6e8e3749ee96f6ffa380d7f5bd,
title = "Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers",
abstract = "The increasing interest about eco-sustainable materials in the industrial production (automotive, civil construction, packaging), has led to the increase of the research works dealing with biocomposites. However, until now the most attention has been devoted to the development of short fiber biocomposites for non-structural applications, whereas only a few works have considered high performance biocomposites for structural applications. Consequently, the development of structural biocomposites from robust natural fibers, as sisal fibers, is a result expected from the scientific community, but not yet achieved. In order to give a contribution to the implementation of high performance biocomposites constituted by a green matrix reinforced by sisal fibers, the present work proposes a manufacturing process that allows to obtain good quality unidirectional biocomposites with fiber volume fraction up to 70{\%}. In detail, it uses unidirectional “stitched” fabrics, properly obtained in laboratory from optimized fibers, and a curing under a proper pressure cycle. The comparison with independent data reported in literature, has evidenced how the proposed biocomposites exhibit mechanical properties higher than most of biocomposites described in literature, so that they can advantageously substitute not only materials as steel, aluminum and glass fiber reinforced plastics, but also other biocomposites reinforced by more expensive fibers.",
author = "Bernardo Zuccarello and Antonio Mancino and Marannano, {Giuseppe Vincenzo}",
year = "2018",
language = "English",
volume = "194",
pages = "--",
journal = "Composite Structures",
issn = "0263-8223",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers

AU - Zuccarello, Bernardo

AU - Mancino, Antonio

AU - Marannano, Giuseppe Vincenzo

PY - 2018

Y1 - 2018

N2 - The increasing interest about eco-sustainable materials in the industrial production (automotive, civil construction, packaging), has led to the increase of the research works dealing with biocomposites. However, until now the most attention has been devoted to the development of short fiber biocomposites for non-structural applications, whereas only a few works have considered high performance biocomposites for structural applications. Consequently, the development of structural biocomposites from robust natural fibers, as sisal fibers, is a result expected from the scientific community, but not yet achieved. In order to give a contribution to the implementation of high performance biocomposites constituted by a green matrix reinforced by sisal fibers, the present work proposes a manufacturing process that allows to obtain good quality unidirectional biocomposites with fiber volume fraction up to 70%. In detail, it uses unidirectional “stitched” fabrics, properly obtained in laboratory from optimized fibers, and a curing under a proper pressure cycle. The comparison with independent data reported in literature, has evidenced how the proposed biocomposites exhibit mechanical properties higher than most of biocomposites described in literature, so that they can advantageously substitute not only materials as steel, aluminum and glass fiber reinforced plastics, but also other biocomposites reinforced by more expensive fibers.

AB - The increasing interest about eco-sustainable materials in the industrial production (automotive, civil construction, packaging), has led to the increase of the research works dealing with biocomposites. However, until now the most attention has been devoted to the development of short fiber biocomposites for non-structural applications, whereas only a few works have considered high performance biocomposites for structural applications. Consequently, the development of structural biocomposites from robust natural fibers, as sisal fibers, is a result expected from the scientific community, but not yet achieved. In order to give a contribution to the implementation of high performance biocomposites constituted by a green matrix reinforced by sisal fibers, the present work proposes a manufacturing process that allows to obtain good quality unidirectional biocomposites with fiber volume fraction up to 70%. In detail, it uses unidirectional “stitched” fabrics, properly obtained in laboratory from optimized fibers, and a curing under a proper pressure cycle. The comparison with independent data reported in literature, has evidenced how the proposed biocomposites exhibit mechanical properties higher than most of biocomposites described in literature, so that they can advantageously substitute not only materials as steel, aluminum and glass fiber reinforced plastics, but also other biocomposites reinforced by more expensive fibers.

UR - http://hdl.handle.net/10447/288236

UR - https://www.sciencedirect.com/science/article/pii/S0263822317338497

M3 - Article

VL - 194

SP - -

JO - Composite Structures

JF - Composite Structures

SN - 0263-8223

ER -