New insight into the structure and function of Hfq C-terminus

Valeria Militello, Federica Piccirilli, Aziz Taghbalout, Sylvain Trépout, Emilie Fortas, Antoine Malabirade, Sergio Marco, Véronique Arluison, Veronique Arluison

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)


Accumulating evidence indicates that RNA metabolism components assemble into supramolecular cellular structures to mediate functional compartmentalization within the cytoplasmic membrane of the bacterial cell. This cellular compartmentalization could play important roles in the processes of RNA degradation and maturation. These components include Hfq, the RNA chaperone protein, which is involved in the post-transcriptional control of protein synthesis mainly by the virtue of its interactions with several small regulatory ncRNAs (sRNA). The Escherichia coli Hfq is structurally organized into two domains. An N-terminal domain that folds as strongly bent beta-sheets within individual protomers to assemble into a typical toroidal hexameric ring. A C-terminal flexible domain that encompasses approximately one-third of the protein seems intrinsically unstructured. RNA-binding function of Hfq mainly lies within its N-terminal core, whereas the function of the flexible domain remains controversial and largely unknown. In the present study, we demonstrate that the Hfq-C-terminal region (CTR) has an intrinsic property to self-assemble into long amyloid-like fibrillar structures in vitro. We show that normal localization of Hfq within membrane-associated coiled structures in vivo requires this C-terminal domain. This finding establishes for the first time a function for the hitherto puzzling CTR, with a plausible central role in RNA transactions.
Original languageEnglish
Pages (from-to)1-9
Number of pages9
JournalBioscience Reports
Publication statusPublished - 2015

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'New insight into the structure and function of Hfq C-terminus'. Together they form a unique fingerprint.

Cite this