New advances in dial-lidar-based remote sensing of the volcanic CO2 flux

Roberto D'Aleo, Simone Santoro, Alessandro Aiuppa, Marco Liuzzo, Simone Santoro, Stefano Parracino, Giovanni Maio, Marcello Nuvoli, Alessandro Aiuppa, Luca Fiorani

Research output: Contribution to journalArticle

5 Citations (Scopus)


We report here on the results of a proof-of-concept study aimed at remotely sensing the volcanic CO2 flux using a Differential Adsorption lidar (DIAL-lidar). The observations we report on were conducted in June 2014 on Stromboli volcano, where our lidar (LIght Detection And Ranging) was used to scan the volcanic plume at ∼3km distance from the summit vents. The obtained results prove that a remotely operating lidar can resolve a volcanic CO2 signal of a few tens of ppm (in excess to background air) over km-long optical paths. We combine these results with independent estimates of plume transport speed (from processing of UV Camera images) to derive volcanic CO2 flux time-series of ≈16–33min temporal resolution. Our lidar-based CO2 fluxes range from 1.8 ± 0.5 to 32.1 ±8.0kg/s, and constrain the daily averaged CO2 emissions fromStromboli at 8.3 ± 2.1 to 18.1 ± 4.5kg/s (or 718–1565 tons/day). These inferred fluxes fall within the range of earlier observations at Stromboli. They also agree well with contemporaneous CO2 flux determinations (8.4–20.1kg/s) obtained using a standard approach that combines Multi-GAS-based in-plume readings of the CO2 /SO2 ratio (≈8) with UV-camera sensed SO2 fluxes (1.5–3.4kg/s). We conclude that DIAL-lidars offer new prospects for safer (remote) instrumental observations of the volcanic CO2 flux.
Original languageEnglish
Number of pages13
JournalFrontiers in Earth Science
Publication statusPublished - 2017

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'New advances in dial-lidar-based remote sensing of the volcanic CO2 flux'. Together they form a unique fingerprint.

  • Cite this

    D'Aleo, R., Santoro, S., Aiuppa, A., Liuzzo, M., Santoro, S., Parracino, S., Maio, G., Nuvoli, M., Aiuppa, A., & Fiorani, L. (2017). New advances in dial-lidar-based remote sensing of the volcanic CO2 flux. Frontiers in Earth Science, 5.