Mesoscopic structural organization in fluorinated pyrrolidinium-based room temperature ionic liquids

Fabrizio Lo Celso, Lorenzo Gontrani, Olga Russina, Elisabetta Simonetti, Uwe Keiderling, Giovanni Battista Appetecchi, Alessandro Triolo

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


In this contribution the microscopic and mesoscopic structural organization in a series of fluorinated room temperature ionic liquids, based on N-methyl-N-alkylpyrrolidinium cations and on bis(perfluoroalkylsulfonyl)imide anions, is investigated, using a synergy of experimental (X-ray and neutron scattering) and computational (Molecular Dynamics) techniques. The proposed ionic liquids are of high interest as electrolyte media for lithium battery applications. Together with information on their good ion transport properties in conjunction with low viscosity, we also describe the existence of nm-scale spatial organization induced by the segregation of fluorous moieties into domains. This study shows the strong complementarity between X-ray/neutron scattering in detecting the complex segregated morphology in these systems at mesoscopic spatial scales and MD simulations in successfully delivering a robust description of the segregated morphology at atomistic level.
Original languageEnglish
Pages (from-to)111110-111119
Number of pages10
JournalJournal of Molecular Liquids
Publication statusPublished - 2019

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Mesoscopic structural organization in fluorinated pyrrolidinium-based room temperature ionic liquids'. Together they form a unique fingerprint.

Cite this