Lower bound limit analysis by bem: Convex optimization problem and incrementalapproach

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The lower bound limit approach of the classical plasticity theory is rephrased using the Multidomain Symmetric Galerkin Boundary Element Method, under conditions of plane and initial strains, ideal plasticity and associated flow rule. The new formulation couples a multidomain procedure with nonlinear programming techniques and defines the self-equilibrium stress field by an equation involving all the substructures (bem-elements) of the discretized system. The analysis is performed in a canonical form as a convex optimization problem with quadratic constraints, in terms of discrete variables, and implemented using the Karnak.sGbem code coupled with the optimization toolbox by MatLab. The numerical tests, compared with the iterative elastoplastic analysis via the Multidomain Symmetric Galerkin Boundary Element Method, developed by some of the present authors, and with the available literature, prove the computational advantages of the proposed algorithm.
Original languageEnglish
Pages (from-to)558-568
Number of pages11
JournalEngineering Analysis with Boundary Elements
Volume37
Publication statusPublished - 2013

All Science Journal Classification (ASJC) codes

  • Analysis
  • General Engineering
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Lower bound limit analysis by bem: Convex optimization problem and incrementalapproach'. Together they form a unique fingerprint.

Cite this