TY - JOUR
T1 - Light absorption and conversion in solar cell based on Si:O alloy
AU - Crupi, Isodiana
AU - Di Marco, null
AU - Scapellato, null
AU - Rubino, null
AU - Crupi, Isodiana
AU - Simone, null
AU - Mirabella, null
PY - 2013
Y1 - 2013
N2 - Thin film Si:O alloys have been grown by plasma enhanced chemical vapor deposition, as intrinsic or highly doped (1 to 5 at. % of B or P dopant) layers. UV-visible/near-infrared spectroscopy revealed a great dependence of the absorption coefficient and of the optical gap (Eg) on the dopant type and concentration, as Eg decreases from 2.1 to 1.9 eV, for the intrinsic or highly p-doped sample, respectively. Thermal annealing up to 400 °C induces a huge H out-diffusion which causes a dramatic absorption increase and a reduction of Eg, down to less than 1.8 eV. A prototypal solar cell has been fabricated using a 400 nm thick, p-i-n structure made of Si:O alloy embedded within flat transparent conductive oxides. Preliminary electrical analyses show a photovoltaic (PV) effect with an open circuit voltage of 0.75 V and a spectral conversion efficiency blue-shifted in comparison to a-Si:H based cell, as expected since the higher Eg in Si:O alloy. These data are presented and discussed, suggesting Si:O alloy as promising material for PV device fabrication. © 2013 AIP Publishing LLC.
AB - Thin film Si:O alloys have been grown by plasma enhanced chemical vapor deposition, as intrinsic or highly doped (1 to 5 at. % of B or P dopant) layers. UV-visible/near-infrared spectroscopy revealed a great dependence of the absorption coefficient and of the optical gap (Eg) on the dopant type and concentration, as Eg decreases from 2.1 to 1.9 eV, for the intrinsic or highly p-doped sample, respectively. Thermal annealing up to 400 °C induces a huge H out-diffusion which causes a dramatic absorption increase and a reduction of Eg, down to less than 1.8 eV. A prototypal solar cell has been fabricated using a 400 nm thick, p-i-n structure made of Si:O alloy embedded within flat transparent conductive oxides. Preliminary electrical analyses show a photovoltaic (PV) effect with an open circuit voltage of 0.75 V and a spectral conversion efficiency blue-shifted in comparison to a-Si:H based cell, as expected since the higher Eg in Si:O alloy. These data are presented and discussed, suggesting Si:O alloy as promising material for PV device fabrication. © 2013 AIP Publishing LLC.
UR - http://hdl.handle.net/10447/155599
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84882243451&partnerID=40&md5=9df2da5e47ad96d922a46b88d42313c2
M3 - Article
SN - 0021-8979
VL - 114
JO - Journal of Applied Physics
JF - Journal of Applied Physics
ER -