Improving angle stability by switching shunt reactors in mixed overhead cable lines. An Italian 400 kV case study

Research output: Contribution to journalArticle

Abstract

Stringent environmental constraints make the construction of new transmission overhead lines more and more difficult. Alternatively, today it is possible to use cable lines for high (HV) and extra-high (EHV) voltage systems. The configuration of the so-called mixed lines can create some problems in the operation of the electrical system, both during steady-state and transient conditions. In particular, the system stability is one of the main concerns when analyzing the dynamic response of power systems. In this paper, the study of angular stability of a system containing a mixed line is presented: a specific control logic applied to the shunt reactors of the mixed line is proposed as improvement of the overall system stability. The proposed switching logic is first discussed from a theoretical point of view and validated with two different testing systems. Then, the existing overhead-cable lines connecting Sicily to the rest of continental Europe 400 kV power system are taken as case study for the application of the proposed switching strategy. Several simulations are performed in the power system analysis software NEPLAN360: the results show the fundamental role of the timing of the control actions applied on the shunt reactors in helping the system to keep the stability. The proposed control proves to be an effective support to the system subjected to critical contingencies, contributing decisively to avoid the angular separation between areas and therefore to preserve the stability of the system.
Original languageEnglish
Number of pages19
JournalEnergies
Volume12
Publication statusPublished - 2019

Fingerprint

Cable
Reactor
Cables
System stability
Angle
Line
Overhead lines
Power System
Dynamic response
Systems analysis
Testing
Electric potential
Logic
Power Analysis
Transmission Line
Systems Analysis
Dynamic Response
Timing
Voltage
Configuration

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Cite this

@article{649989efb0c146618f8789ab6e856f6a,
title = "Improving angle stability by switching shunt reactors in mixed overhead cable lines. An Italian 400 kV case study",
abstract = "Stringent environmental constraints make the construction of new transmission overhead lines more and more difficult. Alternatively, today it is possible to use cable lines for high (HV) and extra-high (EHV) voltage systems. The configuration of the so-called mixed lines can create some problems in the operation of the electrical system, both during steady-state and transient conditions. In particular, the system stability is one of the main concerns when analyzing the dynamic response of power systems. In this paper, the study of angular stability of a system containing a mixed line is presented: a specific control logic applied to the shunt reactors of the mixed line is proposed as improvement of the overall system stability. The proposed switching logic is first discussed from a theoretical point of view and validated with two different testing systems. Then, the existing overhead-cable lines connecting Sicily to the rest of continental Europe 400 kV power system are taken as case study for the application of the proposed switching strategy. Several simulations are performed in the power system analysis software NEPLAN360: the results show the fundamental role of the timing of the control actions applied on the shunt reactors in helping the system to keep the stability. The proposed control proves to be an effective support to the system subjected to critical contingencies, contributing decisively to avoid the angular separation between areas and therefore to preserve the stability of the system.",
keywords = "Cable, Continental Europe, Dynamic analysis, Dynamic equivalent, Italy, Mixed line, Shunt reactor, Sicily, Switching, System stability",
author = "Ippolito, {Mariano Giuseppe} and Fabio Massaro and Rossano Musca",
year = "2019",
language = "English",
volume = "12",
journal = "Energies",
issn = "1996-1073",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",

}

TY - JOUR

T1 - Improving angle stability by switching shunt reactors in mixed overhead cable lines. An Italian 400 kV case study

AU - Ippolito, Mariano Giuseppe

AU - Massaro, Fabio

AU - Musca, Rossano

PY - 2019

Y1 - 2019

N2 - Stringent environmental constraints make the construction of new transmission overhead lines more and more difficult. Alternatively, today it is possible to use cable lines for high (HV) and extra-high (EHV) voltage systems. The configuration of the so-called mixed lines can create some problems in the operation of the electrical system, both during steady-state and transient conditions. In particular, the system stability is one of the main concerns when analyzing the dynamic response of power systems. In this paper, the study of angular stability of a system containing a mixed line is presented: a specific control logic applied to the shunt reactors of the mixed line is proposed as improvement of the overall system stability. The proposed switching logic is first discussed from a theoretical point of view and validated with two different testing systems. Then, the existing overhead-cable lines connecting Sicily to the rest of continental Europe 400 kV power system are taken as case study for the application of the proposed switching strategy. Several simulations are performed in the power system analysis software NEPLAN360: the results show the fundamental role of the timing of the control actions applied on the shunt reactors in helping the system to keep the stability. The proposed control proves to be an effective support to the system subjected to critical contingencies, contributing decisively to avoid the angular separation between areas and therefore to preserve the stability of the system.

AB - Stringent environmental constraints make the construction of new transmission overhead lines more and more difficult. Alternatively, today it is possible to use cable lines for high (HV) and extra-high (EHV) voltage systems. The configuration of the so-called mixed lines can create some problems in the operation of the electrical system, both during steady-state and transient conditions. In particular, the system stability is one of the main concerns when analyzing the dynamic response of power systems. In this paper, the study of angular stability of a system containing a mixed line is presented: a specific control logic applied to the shunt reactors of the mixed line is proposed as improvement of the overall system stability. The proposed switching logic is first discussed from a theoretical point of view and validated with two different testing systems. Then, the existing overhead-cable lines connecting Sicily to the rest of continental Europe 400 kV power system are taken as case study for the application of the proposed switching strategy. Several simulations are performed in the power system analysis software NEPLAN360: the results show the fundamental role of the timing of the control actions applied on the shunt reactors in helping the system to keep the stability. The proposed control proves to be an effective support to the system subjected to critical contingencies, contributing decisively to avoid the angular separation between areas and therefore to preserve the stability of the system.

KW - Cable

KW - Continental Europe

KW - Dynamic analysis

KW - Dynamic equivalent

KW - Italy

KW - Mixed line

KW - Shunt reactor

KW - Sicily

KW - Switching

KW - System stability

UR - http://hdl.handle.net/10447/385383

UR - https://www.mdpi.com/1996-1073/12/7

M3 - Article

VL - 12

JO - Energies

JF - Energies

SN - 1996-1073

ER -