Image Segmentation through a Hierarchy of Minimum Spanning Trees

Salvatore Gaglio, Gaspare Vetrano, Ignazio Infantino, Salvatore Gaglio, Filippo Vella

Research output: Contribution to conferenceOtherpeer-review

4 Citations (Scopus)


Many approaches have been adopted to solve the problem of image segmentation. Among them a noticeable part is based on graph theory casting the pixels as nodes in a graph. This paper proposes an algorithm to select clusters in the images (corresponding to relevant segments in the image) corresponding to the areas induced in the images through the search of the Minimum Spanning Tree (MST). In particular it is based on a clustering algorithm that extracts clusters computing a hierarchy of Minimum Spanning Trees. The main drawback of this previous algorithm is that the dimension of the cluster is not predictable and a relevant portion of found clusters can be composed by micro-clusters that are useless in the segments computation. A new algorithm and a new metric are proposed to select the exact number of clusters and avoid unmeaningful clusters.
Original languageEnglish
Number of pages8
Publication statusPublished - 2012

All Science Journal Classification (ASJC) codes

  • Computer Graphics and Computer-Aided Design
  • Computer Networks and Communications
  • Signal Processing

Fingerprint Dive into the research topics of 'Image Segmentation through a Hierarchy of Minimum Spanning Trees'. Together they form a unique fingerprint.

Cite this