Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

The peculiar surfaces of halloysite nanotubes and their biocompatibility are attracting the interest of researchers based on the wide range of attainable applications. The large aspect ratio of this nanotubular material ensures promising properties as a reinforcing agent in polymeric matrixes, such as cellulose and its derivatives, that entail strengthening due to, for instance, aging-induced degradation. The halloysite cavity has a suitable size for hosting a large variety of active species such as deacidifying (calcium hydroxide) and flame retardant agents (fluorinated surfactants) for a controlled and sustained release relevant to the conservation of cultural heritage. Additionally, anionic surfactants can be selectively adsorbed at the inner surface generating inorganic micelles able to solubilize hydrophobic species in a controlled cleaning protocol. We briefly discuss how the natural halloysite nanotubes can be supportive in various conservation processes of cultural heritage and present an outlook for future perspectives.
Original languageEnglish
Pages (from-to)3677-3689
Number of pages13
JournalLangmuir
Volume36
Publication statusPublished - 2020

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage'. Together they form a unique fingerprint.

Cite this