From different neurophysiological methods to conflicting pathophysiological views in migraine: a critical review of literature.

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Abnormal increased cortical responsivity to various types of stimuli plays a major role in migraine pathogenesis. Neurophysiological studies, however, have provided ambiguous findings of either hypo or hyper cortical excitability. This is why the term "dysexcitability" has been recently proposed to indicate a more general dysregulation of cortical excitability. The aims of this review are: (1) to provide existing knowledge and research advances in migraine pathophysiology; (2) to propose a unitary interpretation of apparently conflicting neurophysiological findings. Data of studies conducted in migraine through various evoked potentials techniques and non-invasive brain stimulation methods are reviewed, and in some cases reinterpreted according to more recent findings on migraine pathophysiology. In particular, we emphasize the concept that various methods of testing brain excitability may induce different degrees of cortical activation depending on the stimulus parameters used (e.g., intensity, frequency, and duration of stimulation), so shedding light on different pathophysiological aspects. Finally, we try to reconcile apparently conflicting neurophysiological data in the light of a unitary pathophysiological model, suggesting that a condition of interictal cortical hyperresponsivity, possibly due to a glutamatergic dysfunction, could represent the primum movens of migraine pathogenesis.
Original languageEnglish
Pages (from-to)-
Number of pages10
JournalClinical Neurophysiology
Volume125
Publication statusPublished - 2014

Fingerprint

Migraine Disorders
Brain
Evoked Potentials
Research
Cortical Excitability

All Science Journal Classification (ASJC) codes

  • Sensory Systems
  • Physiology (medical)
  • Clinical Neurology
  • Neurology

Cite this

@article{10618a7fbab34bce924a394141c478ad,
title = "From different neurophysiological methods to conflicting pathophysiological views in migraine: a critical review of literature.",
abstract = "Abnormal increased cortical responsivity to various types of stimuli plays a major role in migraine pathogenesis. Neurophysiological studies, however, have provided ambiguous findings of either hypo or hyper cortical excitability. This is why the term {"}dysexcitability{"} has been recently proposed to indicate a more general dysregulation of cortical excitability. The aims of this review are: (1) to provide existing knowledge and research advances in migraine pathophysiology; (2) to propose a unitary interpretation of apparently conflicting neurophysiological findings. Data of studies conducted in migraine through various evoked potentials techniques and non-invasive brain stimulation methods are reviewed, and in some cases reinterpreted according to more recent findings on migraine pathophysiology. In particular, we emphasize the concept that various methods of testing brain excitability may induce different degrees of cortical activation depending on the stimulus parameters used (e.g., intensity, frequency, and duration of stimulation), so shedding light on different pathophysiological aspects. Finally, we try to reconcile apparently conflicting neurophysiological data in the light of a unitary pathophysiological model, suggesting that a condition of interictal cortical hyperresponsivity, possibly due to a glutamatergic dysfunction, could represent the primum movens of migraine pathogenesis.",
author = "Filippo Brighina and Brigida Fierro and Giuseppe Cosentino",
year = "2014",
language = "English",
volume = "125",
pages = "--",
journal = "Clinical Neurophysiology",
issn = "1388-2457",
publisher = "Elsevier Ireland Ltd",

}

TY - JOUR

T1 - From different neurophysiological methods to conflicting pathophysiological views in migraine: a critical review of literature.

AU - Brighina, Filippo

AU - Fierro, Brigida

AU - Cosentino, Giuseppe

PY - 2014

Y1 - 2014

N2 - Abnormal increased cortical responsivity to various types of stimuli plays a major role in migraine pathogenesis. Neurophysiological studies, however, have provided ambiguous findings of either hypo or hyper cortical excitability. This is why the term "dysexcitability" has been recently proposed to indicate a more general dysregulation of cortical excitability. The aims of this review are: (1) to provide existing knowledge and research advances in migraine pathophysiology; (2) to propose a unitary interpretation of apparently conflicting neurophysiological findings. Data of studies conducted in migraine through various evoked potentials techniques and non-invasive brain stimulation methods are reviewed, and in some cases reinterpreted according to more recent findings on migraine pathophysiology. In particular, we emphasize the concept that various methods of testing brain excitability may induce different degrees of cortical activation depending on the stimulus parameters used (e.g., intensity, frequency, and duration of stimulation), so shedding light on different pathophysiological aspects. Finally, we try to reconcile apparently conflicting neurophysiological data in the light of a unitary pathophysiological model, suggesting that a condition of interictal cortical hyperresponsivity, possibly due to a glutamatergic dysfunction, could represent the primum movens of migraine pathogenesis.

AB - Abnormal increased cortical responsivity to various types of stimuli plays a major role in migraine pathogenesis. Neurophysiological studies, however, have provided ambiguous findings of either hypo or hyper cortical excitability. This is why the term "dysexcitability" has been recently proposed to indicate a more general dysregulation of cortical excitability. The aims of this review are: (1) to provide existing knowledge and research advances in migraine pathophysiology; (2) to propose a unitary interpretation of apparently conflicting neurophysiological findings. Data of studies conducted in migraine through various evoked potentials techniques and non-invasive brain stimulation methods are reviewed, and in some cases reinterpreted according to more recent findings on migraine pathophysiology. In particular, we emphasize the concept that various methods of testing brain excitability may induce different degrees of cortical activation depending on the stimulus parameters used (e.g., intensity, frequency, and duration of stimulation), so shedding light on different pathophysiological aspects. Finally, we try to reconcile apparently conflicting neurophysiological data in the light of a unitary pathophysiological model, suggesting that a condition of interictal cortical hyperresponsivity, possibly due to a glutamatergic dysfunction, could represent the primum movens of migraine pathogenesis.

UR - http://hdl.handle.net/10447/95991

M3 - Article

VL - 125

SP - -

JO - Clinical Neurophysiology

JF - Clinical Neurophysiology

SN - 1388-2457

ER -