Dynamic Demand and Mean-Field Games

Dario Bauso, Dario Bauso

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Within the realm of smart buildings and smart cities, dynamic response management is playing an ever-increasing role, thus attracting the attention of scientists from different disciplines. Dynamic demand response management involves a set of operations aiming at decentralizing the control of loads in large and complex power networks. Each single appliance is fully responsive and readjusts its energy demand to the overall network load. A main issue is related to mains frequency oscillations resulting from an unbalance between supply and demand. In a nutshell, this paper contributes to the topic by equipping each consumer with strategic insight. In particular, we highlight three main contributions and a few other minor contributions. First, we design a mean-field game for a population of thermostatically controlled loads, study the mean-field equilibrium for the deterministic mean-field game, and investigate on asymptotic stability for the microscopic dynamics. Second, we extend the analysis and design to uncertain models, which involve both stochastic or deterministic disturbances. This leads to robust mean-field equilibrium strategies guaranteeing stochastic and worst-case stability, respectively. Minor contributions involve the use of stochastic control strategies rather than deterministic and some numerical studies illustrating the efficacy of the proposed strategies.
Original languageEnglish
Number of pages13
JournalIEEE Transactions on Automatic Control
Publication statusPublished - 2017

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Dynamic Demand and Mean-Field Games'. Together they form a unique fingerprint.

Cite this