TY - JOUR

T1 - Computational aspects in 2D SBEM analysis with domain inelastic actions

AU - Panzeca, Teotista

AU - Zito, Liborio

AU - Terravecchia, Silvio Salvatore

PY - 2010

Y1 - 2010

N2 - The Symmetric Boundary Element Method, applied to structures subjected to temperature and inelastic actions, shows singular domain integrals.In the present paper the strong singularity involved in the domain integrals of the stresses and tractions is removed and, by means of a limiting operation, this traction is evaluated on the boundary. First the weakly singular domain integral in the Somigliana Identity of the displacements is regularized and the singular integral is transformed into a boundary one using the Radial Integration Method; subsequently, using the differential operator applied to the displacement field, the Somigliana Identity of the tractions inside the body is obtained and through a limit operation its expression is evaluated on the boundary. The latter operation makes it possible to substitute the strongly singular domain integral in a strongly singular boundary one, defined as a Cauchy Principal Value, with which the related free term is associated. The expressions thus obtained for the displacements and the tractions, in which domain integrals are substituted by boundary integrals, were utilized in the Galerkin approach, for the evaluation in closed form of the load coefficients connected to domain inelastic actions.This strategy makes it possible to evaluate the load coefficients avoiding considerable difficulties due to the geometry of the solid analyzed; the obtained coefficients were implemented in the Karnak.sGbem calculus code.

AB - The Symmetric Boundary Element Method, applied to structures subjected to temperature and inelastic actions, shows singular domain integrals.In the present paper the strong singularity involved in the domain integrals of the stresses and tractions is removed and, by means of a limiting operation, this traction is evaluated on the boundary. First the weakly singular domain integral in the Somigliana Identity of the displacements is regularized and the singular integral is transformed into a boundary one using the Radial Integration Method; subsequently, using the differential operator applied to the displacement field, the Somigliana Identity of the tractions inside the body is obtained and through a limit operation its expression is evaluated on the boundary. The latter operation makes it possible to substitute the strongly singular domain integral in a strongly singular boundary one, defined as a Cauchy Principal Value, with which the related free term is associated. The expressions thus obtained for the displacements and the tractions, in which domain integrals are substituted by boundary integrals, were utilized in the Galerkin approach, for the evaluation in closed form of the load coefficients connected to domain inelastic actions.This strategy makes it possible to evaluate the load coefficients avoiding considerable difficulties due to the geometry of the solid analyzed; the obtained coefficients were implemented in the Karnak.sGbem calculus code.

KW - elastoplasticity

KW - multidomain approach

KW - return mapping algorithm

KW - singular domain integral

KW - symmetric BEM

KW - elastoplasticity

KW - multidomain approach

KW - return mapping algorithm

KW - singular domain integral

KW - symmetric BEM

UR - http://hdl.handle.net/10447/41704

M3 - Article

VL - 82

SP - 184

EP - 204

JO - International Journal for Numerical Methods in Engineering

JF - International Journal for Numerical Methods in Engineering

SN - 0029-5981

ER -