Characterizations of Kurzweil--Henstock--Pettis integrable functions

Luisa Di Piazza, Luisa Di Piazza, Kazimierz Musiał

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


We prove that several results of Talagrand proved for thePettis integral hold true also for the Kurzweil--Henstock--Pettisintegral. In particular the Kurzweil--Henstock--Pettisintegrability can be characterized by suitable properties of theoperators defined by the integrands and by cores of thosefunctions.
Original languageEnglish
Pages (from-to)159-176
Number of pages18
JournalStudia Mathematica
Publication statusPublished - 2006

All Science Journal Classification (ASJC) codes

  • General Mathematics

Fingerprint Dive into the research topics of 'Characterizations of Kurzweil--Henstock--Pettis integrable functions'. Together they form a unique fingerprint.

Cite this