Arbitrary Phase Access for Stable Fiber Interferometers

Stefania Sciara, Alfonso Carmelo Cino, Robin Helsten, Michael Kues, Piotr Roztocki, Benjamin Maclellan, Stefania Sciara, Bennet Fischer, Mehedi Islam, Yoann Jestin, Benjamin Maclellan, Sai T. Chu, Christian Reimer, Roberto Morandotti, David J. Moss, Brent Little

Research output: Contribution to journalArticlepeer-review

Abstract

Well‐controlled yet practical systems that give access to interference effects are critical for established and new functionalities in ultrafast signal processing, quantum photonics, optical coherence characterization, etc. Optical fiber systems constitute a central platform for such technologies. However, harnessing optical interference in a versatile and stable manner remains technologically costly and challenging. Here, degrees of freedom native to optical fibers, i.e., polarization and frequency, are used to demonstrate an easily deployable technique for the retrieval and stabilization of the relative phase in fiber interferometric systems. The scheme gives access (without intricate device isolation) to <1.3 × 10−3 π rad error signal Allan deviation across 1 ms to 1.2 h integration times for all tested phases, ranging from 0 to 2π. More importantly, the phase‐independence of this stability is shown across the full 2π range, granting access to arbitrary phase settings, central for, e.g., performing quantum projection measurements and coherent pulse recombination. Furthermore, the scheme is characterized with attenuated optical reference signals and single‐photon detectors, and extended functionality is demonstrated through the use of pulsed reference signals (allowing time‐multiplexing of both main and reference signals). Finally, the scheme is used to demonstrate radiofrequency‐controlled interference of high‐dimensional time‐bin entangled states.
Original languageEnglish
Number of pages11
JournalLASER & PHOTONICS REVIEWS
Volume15
Publication statusPublished - 2021

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Arbitrary Phase Access for Stable Fiber Interferometers'. Together they form a unique fingerprint.

Cite this