Addition of high C:N crop residues to a P-limited substrate constrains the benefits of arbuscular mycorrhizal symbiosis for wheat P and N nutrition

Alfonso Salvatore Frenda, Rosolino Ingraffia, Gaetano Amato, Dario Giambalvo, Paolo Ruisi, Sergio Saia, Antonio Giovino, Federico Martinelli, Giuseppe Badagliacca, Federico Martinelli

Research output: Contribution to journalArticlepeer-review

Abstract

Many aspects concerning the role of arbuscular mycorrhizal (AM) fungi in plant nutrient uptake from organic sources remain unclear. Here, we investigated the contribution of AM symbiosis to N and P uptake by durum wheat after the addition of a high C:N biomass to a P-limited soil. Plants were grown in pots in the presence or absence of a multispecies AM inoculum, with (Org) or without (Ctr) the addition of 15N-labelled organic matter (OM). A further treatment, in which 15N was applied in mineral form (Ctr+N) in the same amount as that supplied in the Org treatment, was also included. Inoculation with AM had positive effects on plant growth in both control treatments (Ctr and Ctr+N), mainly linked to an increase in plant P uptake. The addition of OM, increasing the P available in the soil for the plants, resulted in a marked decrease in the contribution of AM symbiosis to plant growth and nutrient uptake, although the percentage of mycorrhization was higher in the Org treatment than in the controls. In addition, mycorrhization drastically reduced the recovery of 15N from the OM added to the soil whereas it slightly increased the N recovery from the mineral fertiliser. This suggests that plants and AM fungi probably exert a differential competition for different sources of N available in the soil. On the whole, our results provide a contribution to a better understanding of the conditions under which AM fungi can play an effective role in mitigating the negative effects of nutritional stresses in plants.
Original languageEnglish
Number of pages14
JournalMycorrhiza
Publication statusPublished - 2021

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Plant Science

Fingerprint

Dive into the research topics of 'Addition of high C:N crop residues to a P-limited substrate constrains the benefits of arbuscular mycorrhizal symbiosis for wheat P and N nutrition'. Together they form a unique fingerprint.

Cite this