Acetaldehyde, motivation and stress: Behavioral evidence of an addictive ménage à trois

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Acetaldehyde (ACD) contributes to alcohol’s psychoactive effects through its own rewarding properties. Recent studies shed light on the behavioral correlates of ACD administration and the possible interactions with key neurotransmitters for motivation, reward and stress-related response, such as dopamine and endocannabinoids. This mini review article critically examines ACD psychoactive properties, focusing on behavioral investigations able to unveil ACD motivational effects and their pharmacological modulation in vivo. Similarly to alcohol, rats spontaneously drink ACD, whose presence is detected in the brain following chronic self-administration paradigm. ACD motivational properties are demonstrated by operant paradigms tailored to model several drug-related behaviors, such as induction and maintenance of operant self-administration, extinction, relapse and punishment resistance. ACD-related addictive-like behaviors are sensitive to pharmacological manipulations of dopamine and endocannabinoid signaling. Interestingly, the ACD-dopamine-endocannabinoids relationship also contributes to neuroplastic alterations of the NPYergic system, a stress-related peptide critically involved in alcohol abuse. The understanding of the ménage-a-trois among ACD, reward- and stress-related circuits holds promising potential for the development of novel pharmacological approaches aimed at reducing alcohol abuse.
Original languageEnglish
Pages (from-to)23-
Number of pages8
JournalFrontiers in Behavioral Neuroscience
Volume11
Publication statusPublished - 2017

All Science Journal Classification (ASJC) codes

  • Neuropsychology and Physiological Psychology
  • Cognitive Neuroscience
  • Behavioral Neuroscience

Fingerprint Dive into the research topics of 'Acetaldehyde, motivation and stress: Behavioral evidence of an addictive ménage à trois'. Together they form a unique fingerprint.

Cite this