A Two-Node Finite Element for LinearMagneto-Electric Laminated Timoshenko Beams

Research output: Contribution to conferenceOtherpeer-review

Abstract

A new finite element is presented for linear magnetoelectric straight laminated beamsubject to the assumptions of quasi-steady electromagnetic state. The mechanicalmodel is based upon Timoshenko beam theory to account for shear deformation influences.The electromagnetic stacking sequence is proved to enter the equivalentelastic problem by affecting both the stiffness properties of the beam, in terms of axialand flexural coupling, and by modifying the mechanical boundary conditions as distributedloads. Shape functions are first written for the generalized beam mean-linekinematical quantities in such a way the obtained strain field fulfills the homogeneousgoverning equations of the equivalent elastic problem. The weak form of the governingequations are then obtained by integrating over the element length the equation ofmotion of the beam opportunely multiplied by the virtual mean-line axial and transversedisplacements and by the virtual cross-sectional rotation. Both the virtual andactual kinematical quantities are then expressed in terms of virtual and actual nodalvariables by means of the proposed shape functions. By so doing, the definitions ofthe element mass and stiffness matrices and of the equivalent force vector are straightforwardlyobtained. Lastly, numerical results are presented to assess the soundness ofthe proposed formulation.
Original languageEnglish
Number of pages13
Publication statusPublished - 2012

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Civil and Structural Engineering
  • Computational Theory and Mathematics
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'A Two-Node Finite Element for LinearMagneto-Electric Laminated Timoshenko Beams'. Together they form a unique fingerprint.

Cite this