A stochastic reaction-diffusion-taxis model for two picophytoplankton populations

Research output: Other contribution

Abstract

In this work, the stationary distributions of two populations ofpicophytoplankton, i.e. picoeukaryotes and Prochlorococcus, arestudied. This two groups account on average for 60% of the totalchlorophyll a (chl a) and divinil chlorophyll a (divinil chl a) concentration in Mediterranean Sea. Theinteraction of these populations with the environment occurs throughtwo factors that limit the growth of the aquatic microorganisms: light intensity and nutrient, i.e. phosphorus. The dynamics of the two picophytoplanktonic groups, distributed at different depth along a water column (one-dimensional spatial domain), is analyzed starting from a deterministic reaction-diffusion-taxis model. This consists of a system of three differential equations and an auxiliary equation for light intensity. By numerical methods we calculate the stationary solutions for the spatial distributions of the picophytoplankton biomass along the water column, obtaining the corresponding content of chlorophyll a and divinil chlorophyll aconcentration. The results indicate the presence of a maximum of the total concentration of chl a and divinil chl a at a certain depth. Magnitude and localization of this maximum are in agood agreement with experimental findings. In order to consider theeffect of the random environmental fluctuations, we modify our equations, by inserting sources of multiplicative white Gaussian noise, then we calculate from the stochastic model the new distributions for the chl a and divinil chl a concentration. The results show that position, shape and magnitudeof the peaks agree with the experimental data better than those obtained from the deterministic model.
Original languageEnglish
Publication statusPublished - 2012

Fingerprint

taxis
chlorophyll a
light intensity
water column
numerical method
chlorophyll
microorganism
spatial distribution
phosphorus
nutrient
biomass
distribution

Cite this

@misc{2392e84f73bd4b02b57b01eb96bfbb5a,
title = "A stochastic reaction-diffusion-taxis model for two picophytoplankton populations",
abstract = "In this work, the stationary distributions of two populations ofpicophytoplankton, i.e. picoeukaryotes and Prochlorococcus, arestudied. This two groups account on average for 60{\%} of the totalchlorophyll a (chl a) and divinil chlorophyll a (divinil chl a) concentration in Mediterranean Sea. Theinteraction of these populations with the environment occurs throughtwo factors that limit the growth of the aquatic microorganisms: light intensity and nutrient, i.e. phosphorus. The dynamics of the two picophytoplanktonic groups, distributed at different depth along a water column (one-dimensional spatial domain), is analyzed starting from a deterministic reaction-diffusion-taxis model. This consists of a system of three differential equations and an auxiliary equation for light intensity. By numerical methods we calculate the stationary solutions for the spatial distributions of the picophytoplankton biomass along the water column, obtaining the corresponding content of chlorophyll a and divinil chlorophyll aconcentration. The results indicate the presence of a maximum of the total concentration of chl a and divinil chl a at a certain depth. Magnitude and localization of this maximum are in agood agreement with experimental findings. In order to consider theeffect of the random environmental fluctuations, we modify our equations, by inserting sources of multiplicative white Gaussian noise, then we calculate from the stochastic model the new distributions for the chl a and divinil chl a concentration. The results show that position, shape and magnitudeof the peaks agree with the experimental data better than those obtained from the deterministic model.",
author = "Giovanni Denaro and Bernardo Spagnolo and Davide Valenti and {La Cognata}, Angelo",
year = "2012",
language = "English",
type = "Other",

}

TY - GEN

T1 - A stochastic reaction-diffusion-taxis model for two picophytoplankton populations

AU - Denaro, Giovanni

AU - Spagnolo, Bernardo

AU - Valenti, Davide

AU - La Cognata, Angelo

PY - 2012

Y1 - 2012

N2 - In this work, the stationary distributions of two populations ofpicophytoplankton, i.e. picoeukaryotes and Prochlorococcus, arestudied. This two groups account on average for 60% of the totalchlorophyll a (chl a) and divinil chlorophyll a (divinil chl a) concentration in Mediterranean Sea. Theinteraction of these populations with the environment occurs throughtwo factors that limit the growth of the aquatic microorganisms: light intensity and nutrient, i.e. phosphorus. The dynamics of the two picophytoplanktonic groups, distributed at different depth along a water column (one-dimensional spatial domain), is analyzed starting from a deterministic reaction-diffusion-taxis model. This consists of a system of three differential equations and an auxiliary equation for light intensity. By numerical methods we calculate the stationary solutions for the spatial distributions of the picophytoplankton biomass along the water column, obtaining the corresponding content of chlorophyll a and divinil chlorophyll aconcentration. The results indicate the presence of a maximum of the total concentration of chl a and divinil chl a at a certain depth. Magnitude and localization of this maximum are in agood agreement with experimental findings. In order to consider theeffect of the random environmental fluctuations, we modify our equations, by inserting sources of multiplicative white Gaussian noise, then we calculate from the stochastic model the new distributions for the chl a and divinil chl a concentration. The results show that position, shape and magnitudeof the peaks agree with the experimental data better than those obtained from the deterministic model.

AB - In this work, the stationary distributions of two populations ofpicophytoplankton, i.e. picoeukaryotes and Prochlorococcus, arestudied. This two groups account on average for 60% of the totalchlorophyll a (chl a) and divinil chlorophyll a (divinil chl a) concentration in Mediterranean Sea. Theinteraction of these populations with the environment occurs throughtwo factors that limit the growth of the aquatic microorganisms: light intensity and nutrient, i.e. phosphorus. The dynamics of the two picophytoplanktonic groups, distributed at different depth along a water column (one-dimensional spatial domain), is analyzed starting from a deterministic reaction-diffusion-taxis model. This consists of a system of three differential equations and an auxiliary equation for light intensity. By numerical methods we calculate the stationary solutions for the spatial distributions of the picophytoplankton biomass along the water column, obtaining the corresponding content of chlorophyll a and divinil chlorophyll aconcentration. The results indicate the presence of a maximum of the total concentration of chl a and divinil chl a at a certain depth. Magnitude and localization of this maximum are in agood agreement with experimental findings. In order to consider theeffect of the random environmental fluctuations, we modify our equations, by inserting sources of multiplicative white Gaussian noise, then we calculate from the stochastic model the new distributions for the chl a and divinil chl a concentration. The results show that position, shape and magnitudeof the peaks agree with the experimental data better than those obtained from the deterministic model.

UR - http://hdl.handle.net/10447/74807

M3 - Other contribution

ER -