A simplified method for ductility calculation in RC jacketed columns

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Reinforced concrete (RC) jacketing is a common method to retrofit existing columns with poor structural performance. It can be applied in two different ways: if the continuity of the jacket is ensured, the axial load of the column can be transferred to the jacket, which will be directly loaded; conversely, if no continuity is provided, the jacket induces only confinement action. In both cases the strength and ductility evaluation is rather complex, due to the different physical phenomena included, such as confinement, composite action core-jacket, preload, buckling of longitudinal bars.Although different theoretical studies have been carried out to calculate the confinement effects, a practical approach to evaluate the flexural capacity and ductility is still missing. The calculation of these quantities is often related to the use of commercial computer programs, taking advantage of numerical methods such as fiber method or finite element method.This paper presents a simplified approach to calculate the flexural strength and ductility of square RC jacketed sections subjected to axial load and bending moment. In particular the proposed approach is based on the calibration of the stress-block parameters including the confinement effect. Equilibrium equations are determined and buckling of longitudinal bars is modeled with a suitable stress-strain law. Moment-curvature curves are derived with simple calculations. Finally, comparisons are made with numerical analyses carried out with the code OpenSees and with experimental data available in the literature, showing good agreement.
Original languageEnglish
Title of host publicationAtti del XVI Convegno ANIDIS 2015: L'Ingegneria Sismica in Italia
Number of pages10
Publication statusPublished - 2015


Dive into the research topics of 'A simplified method for ductility calculation in RC jacketed columns'. Together they form a unique fingerprint.

Cite this