A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements - Part 2: Simulation results

Emiliano Pipitone, Gianpaolo Vitale, Gianpaolo Vitale

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In this two-part work, an electric kinetic energy recovery system (e-KERS) for internal combustion engine vehicle (ICEV) is presented and its performance evaluated through numerical simulations. The KERS proposed is based on the use of a supercapacitor as energy storage, interfaced to a brushless machine through a properly designed power converter. In Part 1, the system is described and analysed, and the mathematical model used for the simulations is presented. For each component of the KERS, the real efficiency and the power or energy limitations are adequately considered. In Part 2, the energetic and economic advantages attainable by the proposed KERS are evaluated using MATLAB Simulink, considering a widely diffused passenger car and two reference driving cycles (ECE-15 and Artemis urban). Energy savings of the order of 20% were found, with a slight increase in vehicle weight (+2%) and with an overall commercial cost that would be compensated in 5 years thanks to the fuel economy improvement, to which corresponds an equal reduction of CO2 emissions. The low complexity of the system, never proposed for ICEV, the moderate weight of its components, and their availability on the market, make the solution presented ready for the introduction in current vehicle production.
Original languageEnglish
Pages (from-to)1-13
Number of pages13
JournalJournal of Power Sources
Volume448
Publication statusPublished - 2020

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements - Part 2: Simulation results'. Together they form a unique fingerprint.

Cite this