A plant-wide wastewater treatment plant model for carbon and energy footprint: Model application and scenario analysis

Alida Cosenza, Giorgio Mannina, Giorgio Mannina, Kartik Chandran, Kartik Chandran, Kartik Chandran, Kartik Chandran

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

A new model for accounting carbon and energy footprint of wastewater treatment plants (WWTPs) is proposed. The model quantifies direct and indirect greenhouse gas (GHG) emissions related to biological and physical processes of a WWTP. The model takes into account several innovative aspects with respect to already available literature models: i. kinetic/mass-balances; ii. nitrification as a two-step process; iii. nitrous oxide (N 2 O) formation during nitrification and denitrification both in dissolved and off-gas forms. A full-scale application has been performed by adopting the case study of a real WWTP. A scenario analysis was performed to quantify the influence of: composition of inflow wastewater (scenario 1), operating conditions (scenario 2), and oxygen transfer efficiency (scenario 3). Results have underlined the key role of the ratio between influent biodegradable carbon and nitrogen concentration on influencing direct and indirect GHG emissions. Direct GHG emissions increase from 0.49 to 0.63 kgCO 2 eq m −3 with the decrease of the influent ratio of the readily biodegradable carbon and organic and ammonia nitrogen. The increase of the influent organic and ammonia nitrogen favours the daily production of active ammonia oxidization biomass. The simultaneous variation of the investigated factors has amplified direct and indirect GHG emissions to a maximum value of 0.94 and 0.24 kgCO 2eq m −3 , respectively.
Original languageEnglish
Pages (from-to)244-256
Number of pages13
JournalJOURNAL OF CLEANER PRODUCTION
Volume217
Publication statusPublished - 2019

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Environmental Science(all)
  • Strategy and Management
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'A plant-wide wastewater treatment plant model for carbon and energy footprint: Model application and scenario analysis'. Together they form a unique fingerprint.

  • Cite this