A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

A comprehensive plant-wide mathematical modelling comparison between conventional activated sludge (CAS) and Membrane bioreactor (MBR) systems is presented. The main aim of this study is to highlight the key features of CAS and MBR in order to provide a guide for an effective plant operation. A scenario analysis was performed to investigate the influence on direct and indirect greenhouse gas (GHG) emissions and operating costs of (i) the composition of inflow wastewater (scenario 1), (ii) operating conditions (scenario 2) and (iii) oxygen transfer efficiency (scenario 3). Scenarios show higher indirect GHG emissions for MBR than CAS, which result is related to the higher energy consumption in MBR. The simultaneous variation of the investigated factors (scenario 4) exacerbates direct and indirect GHG emissions for both CAS and MBR. Indeed, during scenario 4 a maximum direct GHG emissions of 0.94 kgCO2eq m−3 and 1.56 kgCO2eq m−3 for CAS and MBR, respectively, was obtained.
Original languageEnglish
Number of pages11
JournalBioresource Technology
Volume297
Publication statusPublished - 2020

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Environmental Engineering
  • Renewable Energy, Sustainability and the Environment
  • Waste Management and Disposal

Fingerprint Dive into the research topics of 'A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge'. Together they form a unique fingerprint.

  • Cite this