A novel ionic exchange membrane crystallizer to recover magnesium hydroxide from seawater and industrial brines

Research output: Contribution to journalArticlepeer-review


A novel technology, the ion exchange membrane crystallizer (CrIEM), that combines reactive and membrane crystallization, was investigated in order to recover high purity magnesium hydroxide from multi-component artificial and natural solutions. In particular, in a CrIEM reactor, the presence of an anion exchange membrane (AEM), which separates two-compartment containing a saline solution and an alkaline solution, allows the passage of hydroxyl ions from the alkaline to the saline solution compartment, where crystallization of magnesium hydroxide occurs, yet avoiding a direct mixing between the solutions feeding the reactor. This enables the use of low-cost reactants (e.g., Ca(OH)2) without the risk of co-precipitation of by-products and contamination of the final crystals. An experimental campaign was carried out treating two types of feed solution, namely: (1) a waste industrial brine from the Bolesław Śmiały coal mine in Łaziska Górne (Poland) and (2) Mediterranean seawater, collected from the North Sicilian coast (Italy). The CrIEM was tested in a feed and bleed modality in order to operate in a continuous mode. The Mg2+ concentration in the feed solutions ranges from 0.7 to 3.2 g/L. Magnesium recovery efficiencies from 89 up to 100% were reached, while magnesium hydroxide purity between 94% and 98.8% was obtained.
Original languageEnglish
Pages (from-to)1-14
Number of pages14
Publication statusPublished - 2020

All Science Journal Classification (ASJC) codes

  • Chemical Engineering (miscellaneous)
  • Process Chemistry and Technology
  • Filtration and Separation

Cite this