A note on the Schur multiplier of a nilpotent Lie algebra

Francesco Russo, Peyman Niroomand

    Research output: Contribution to journalArticlepeer-review

    42 Citations (Scopus)

    Abstract

    For a nilpotent Lie algebra $L$ of dimension $n$ and dim$(L^2)=m$, we find the upper bound dim$(M(L))\leq {1/2}(n+m-2)(n-m-1)+1$, where $M(L)$ denotes the Schur multiplier of $L$. In case $m=1$ the equality holds if and only if $L\cong H(1)\oplus A$, where $A$ is an abelian Lie algebra of dimension $n-3$ and H(1) is the Heisenberg algebra of dimension 3.
    Original languageEnglish
    Pages (from-to)1293-1297
    Number of pages5
    JournalCommunications in Algebra
    Volume39
    Publication statusPublished - 2011

    All Science Journal Classification (ASJC) codes

    • Algebra and Number Theory

    Fingerprint

    Dive into the research topics of 'A note on the Schur multiplier of a nilpotent Lie algebra'. Together they form a unique fingerprint.

    Cite this