A Dual Role for Hyperbaric Oxygen in Stroke Neuroprotection: Preconditioning of the Brain and Stem Cells

Research output: Contribution to journalArticlepeer-review

Abstract

Stroke continues to be an extremely prevalent disease and poses a great challenge in developing safe and effective therapeutic options. Hyperbaric oxygen therapy (HBOT) has demonstrated significant pre-clinical effectiveness for the treatment of acute ischemic stroke, and limited potential in treating chronic neurological deficits. Reported benefits include reductions in oxidative stress, inflammation, neural apoptosis, and improved physiological metrics such as edema and oxygen perfusion, all of which contribute to improved functional recovery. This pre-clinical evidence has failed to translate into an effective evidence-based therapy, however, due in large part to significant inconsistencies in treatment protocols and design of clinical studies. While the medical community works to standardize clinical protocols in an effort to advance HBOT for acute stroke, pre-clinical investigations continue to probe novel applications of HBOT in an effort to optimize stroke neuroprotection. One such promising strategy is HBOT preconditioning. Based upon the premise of mild oxidative stress priming the brain for tolerating the full-blown oxidative stress inherent in stroke, HBOT preconditioning has displayed extensive efficacy. Here, we first review the pre-clinical and clinical evidence supporting HBOT delivery following ischemic stroke and then discuss the scientific basis for HBOT preconditioning as a neuroprotective strategy. Finally, we propose the innovative concept of stem cell preconditioning, in tandem with brain preconditioning, as a promising regenerative pathway for maximizing the application of HBOT for ischemic stroke treatment.
Original languageEnglish
Pages (from-to)151-166
Number of pages16
JournalCONDITIONING MEDICINE
Volume1
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'A Dual Role for Hyperbaric Oxygen in Stroke Neuroprotection: Preconditioning of the Brain and Stem Cells'. Together they form a unique fingerprint.

Cite this